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ABSTRACT. City planners have a professional and ethical responsibility to provide public
goods equitably. Parks improve mental and physical health by nurturing social cohesion and
enabling physical activity. So who gets parks? Park access has traditionally been evaluated
using constructed variables of potential access: distances, buffers, and gravity models. These
models have major limitations: they ignore commutes and other more intricate mobility
behaviors. To address these issues, I propose a nationally scalable, empirical measure of
realized use. Using a dataset of smartphone locations, I identify visits to parks in the twenty
largest American cities. I use these data to calibrate existing models, and then contrast the
models with realized use. The spatial models are not simply imprecise; they systematically
over-estimate realized access by minority populations. In other words, they understate
inequity.

1. INTRODUCTION

This paper presents scalable measures of park visitation at the neighborhood level,
constructed using GPS locations of smartphone users in tandem with park and green space
boundaries from OpenStreetMap. The need for and role of parks is fundamentally different
in urban, suburban, and rural environments, and this paper focuses on the twenty largest
American cities. Park visits are identified as locations recorded within parks. This empirical
measure of use automatically accounts for the spatial and economic complexity of urban
routines. This approach is less expensive, more replicable and scalable, and spatially more
precise than the survey measures used in the past to ascertain actual use. It is distinguished
by unprecedented sample size, within and across cities. I share these aggregated visit data.

Parks’ value arise from both the intrinsic pleasure of their use as well as their derived
benefits. Recent work on park access has had two major focusses: the equity with which
it is provisioned, and the impacts on mental health and physical activity. Most studies
evaluate access by relying on distances, buffers, and gravity potentials to measure the spatial
accessibility of resources (Markevych et al., 2017; Talen, 1998; Wolch et al., 2014). These
data are generally derived from GIS data or acquired through expensive surveys. They assess
potential access: resources that could be used. But for practical planning, academic studies,
and consideration of equity, “potential access” is often the wrong metric.

Scholars have long defined equity as realized use rather than simply expenditures — in
the context of parks, visitation rather than facilities. In the epidemiological space, the
primary causal mechanism by which greenspaces impact population physiology is through
use and direct contact. The importance of measuring actual spatial exposures is widely
recognized by geographers (Kwan, 2012). There is good reason to expect potential access and
realized use to differ dramatically. Space is just one of many barriers to access: geographers
dating to Hégerstrand (1970) have recognized time constraints, and meaningful access also
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depends on population social, economic, and cultural factors (Penchansky and Thomas, 1981).
The paper thus explores the agreement between use and the spatial access often used to
proxy it. It suggests that proxying “access” through proximity results in a measure that is
demographically biased rather than simply noisy.

After reviewing the literature (Section 2), I describe the data and its initial processing
(Section 3). Supplementary materials extend the validation of their performance in this
application. Section 4 describes the methods for calibrating models and contrasting them
with data. Sections 5 and 6 present and discuss results: they show that demography predicts
empirical use, even after controlling for spatial accessibility. I conclude with a discussion of
the role and limitations of this new form of data for future work.

2. LITERATURE REVIEW: MEASURING ACCESS TO GREENSPACE

2.1. The current state of the art. Two major geographic literatures focus on the spatial
accessibility of parks and greenspaces. The first evaluates territorial or spatial equity in
the provision of public services. The second measures the impacts of greenspace on health,
chiefly though not exclusively through physical activity and stress reduction. Excellent
recent reviews include Wolch et al. (2014) on park equity and Markevych et al. (2017) on
the epidemiological consequences. Table A.1 of the supplementary materials provides an
extensive but certainly incomplete listing of methodologies used over the past two decades.
Seminal early work on the impact of various methodologies is by Talen and Anselin (1998).

In both literatures, park access is associated with spatial proximity, usually relying on one
of three methods: the distance to the nearest facility, a gravity potential model, or the green
area within a buffer of neighborhood. Label parks and greenspaces by p, and call their areas
A(p). Denote the network distance from neighborhood ¢ to park p by ds,. The minimum
distance to a park can then be written as

Aq(l) = mpinégp. (1)

This minimum may be modified to consider only those facilities whose areas exceed a minimum
threshold, {p|A(p) > Amin}. Using identical notation, the gravity potential is a weighted sum
over facilities, with parks weighted up by their area and down by the distance required to
reach them, to some power a:

Ag(t,a) = Alp) /s, (2)

The buffered area A(-) of location ¢ is defined simply as the area A(-) of the city’s greenspace
G that intersects a circle of radius R centered at ¢, Cy(R):

A4(0, R) = A(G ~ Cy(R)). (3)

These constructions are illustrated in Figure 1. All three appeal to a primacy of proximity
natural to geographers familiar with Tobler’s First Law, that “near things are more related
than distant things” (Tobler, 1970).

The gravity and buffer models each have an explicit, tunable parameter: the radius R of the
buffered area, and the decay rate « of the gravity potential. The minimum area threshold A,
of the minimum-distance metric is less-standard, although regularly recognized (see Logan
et al., 2017). Beyond these parameters are many implicit choices regarding the origins and
destinations between which to measure distance, and indeed how to calculate these distances.

The choices made over both methods and parameters impact substantive conclusions. This
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indeterminacy in results according to methods was first articulated by Talen and Anselin
(1998).

Recent methodological work has advocated refinements or sensitivity analyses for network
as opposed to Euclidean distance and the use of park boundaries or formal entrances instead of
centroids (Higgs et al., 2012), finer, parcel-level granularity for walking environments (Logan
et al., 2017), comparisons of types of land cover (greenspace, trees, or grass) (Gascon et al.,
2016; Reid et al., 2017), and the scale of buffer or shape of aggregation regions (Giles-Corti
et al., 2005; Reid et al., 2018). On the other hand, this work has demonstrated mainly that
results differ according to the choice of method, and they have provided less guidance as to
the “right” choice. Lacking clear guidance, methodological consistency across applied work

has been poor. Reviews have noted this as a major limitations of the literature (Brownson et
al., 2009; Markevych et al., 2017; Wolch et al., 2014).

2.2. Visitation, not proximity, is the relevant concept. But how can the “right” choice
be evaluated? The answer lies in the notion that spatial access is often not the intended
concept in the first place. There are two levels of access — potential and realized — which may
be thought of as ease of use and use itself (Khan and Bhardwaj, 1994). Theoretically, it is not
potential access but realized use that is generally appropriate to measurements of the equity
or impacts of greenspace. In many cases, proximity is just a simple, limited “proxy” for this
more-fundamental quantity of use or exposure (Markevych et al., 2017; Sister et al., 2010).

First consider equity. From the outset, work on (territorial) equity of resource provision
has focussed on the relation between need and use, rather pro forma availability (Davies,
1968). Indeed, Harvey emphasized in early work that equity can entail uneven distribution:
“individuals have rights to equal levels of benefits, which means that there is unequal allocation
according to need” (2009, p. 100). What matters is the distribution not of expenditures but
of benefits — in the case of parks, not land but visitation (Boyne and Powell, 1991). This
view is echoed resoundingly in the foundations and literatures of health access (Aday and
Andersen, 1974; Donabedian, 1972; Institute of Medicine, 1993) and planning (American
Institute of Certified Planners, 2016, §A1f). To translate the argument to the context of
planning: the goal is not simply to spend money but to deliver a service. The park that lies
vacant fails to do so.

In the health literature, park proximity is studied as a “treatment” affecting physical
activity, and physical and mental health. Though parks also provide sound barriers (Van
Renterghem et al., 2015), attenuate urban heat islands (Gronlund et al., 2015), and offer
restorative views (Ulmer et al., 2016), the primary implicit causal mechanism of exposure
is mediated by use. To adopt the language of medicine, the park “dose” delivered is not
the amount of spatial access but the amount of use. Focusing on proximity instead can
be likened to an “intent to treat” (ITT) rather than a “treatment on the treated” (TOT).
The compliance, the relationship between the I'TT and TOT, may not be constant across
or within cities. This issue parallels the Uncertain Geographic Context Problem (UGCoP)
articulated by Kwan (2012): measures of spatial “exposures” should reflect the contexts that
individuals actually experience.

A major line of inquiry is the relationship between proximity and use, and activity or other
“downstream” effects like general health. The causal chain linking proximity and activity and
health frequently elides mediation through use. All three variables are commonly evaluated
through survey reports (see supplement for table of methods); proximity and accessibility are

also often derived using GIS, and equated. Survey measures, both generally and of activity
3



Park Use in American Cities

and proximity in particular, have well-established limitations: high costs, poor instrument
design and high recall error (van Poppel et al., 2010), and plunging response rates (Pew
Research Center, 2019). Comparisons of objective and perceived proximity to parks have
shown poor to moderate correspondence (Jilcott et al., 2007; Lackey and Kaczynski, 2009;
Maddison et al., 2010).

In short, for equity and exposures the apposite quantity is more often use than proximity.
Studies evaluating use directly need scalable, objective measures. Likewise, those focused on
downstream outcomes like physical activity or general health, would benefit from isolating
the causal step from park presence to use.

2.3. Aspatial determinants of access. This paper measures the use of parks, and evaluates
the empirical relationship between use and proximity. Differences between the two are driven
by temporal and social constraints on individuals’ routines. These constraints have been
recognized and studied for decades in literatures on activity spaces, time geography, and
service provision. This work shares and advances those literatures’ aim to understand
individuals’ real routines and access to resources.

Half a century ago, Horton and Reynolds (1970, 1971) proposed the study of activity spaces
as “the subset of all urban locations with which the individual has direct contact as the result
of day-to-day activities” (1971, p. 37). The present paper takes up this mantle, to understand
“direct contact” with greenspaces. It also advances this field. Despite Horton and Reynold’s
intent, activity spaces have traditionally been operationalized using standard-deviational
ellipses, minimum convex polygons, and buffers (Patterson and Farber, 2015). These regions
can hardly be said to capture the spaces with which individuals come into “direct contact,”
in their routines. It is only recently that work has begun to itemize the individual locations —
the actual contacts and specific locations.

In the same year that Horton and Reynolds introduced activity spaces, Hagerstrand (1970)
proposed a parallel project to understand “the fate of the individual human being in an
increasingly complicated environment.” Hagerstrand weighed two possible strategies: first, to
“sample life paths” as biologists band birds and second, to itemize the constraints — especially
temporal — on individuals’ routines. He chose to pursue constraints and laid the course for
space-time geography. Work in the intervening decades has provided theoretical clarity to
the temporal constraints on individuals and the “poles” — home and work — in their daily
routines (Dijst, 1999a). It has shown how differences in individuals’ temporal constraints can
create differential accessibility, for instance by gender (Dijst, 1999b; Kwan, 1998). The value
of the space-time approach is that it makes its assumptions explicit; the challenge is that
analysts must explicitly model each realistic refinement. Often, the refinements lack realism.
For example, time space geometries tend to view locations near home, work, or commute as
accessible, since they entail brief deviations from fixed routines. In reality, a location halfway
between home and work may never be visited, and the next neighborhood over may never
be explored. Hagerstrand recognized from the outset that the choice among constraints was
methodologically “piecemeal” and theoretically “artistic” (p. 20-21). Further, demanding
data and computational requirements, have stymied adoption in applied and professional
work (Geurs and van Wee, 2004).

Beyond time, a collection of social and economic barriers constrict access. Penchansky and
Thomas (1981) famously outlined the “5As” of access to a resource — availability, accessibility,
accommodation, affordability, and acceptability — encompassing its total supply, spatial

distribution, opening hours, economic costs, and the cultural match between resource and
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users. For an example in the context of parks, Byrne and Wolch (2009) documented how design
choices have historically been driven by majority preferences, privileging the acceptability to
those groups. This dynamic continues to play out in American cities (Hui, 2017; Hyra, 2015).
Social conditions also affect use. Sociologists have of late renewed their focus on the resources
available in urban neighborhoods, and the interplay among forms of disadvantage (Desmond
and Western, 2018; Sharkey and Faber, 2014). These factors affect residents’ ability to use
public resources; they therefore affect equity and dose.

A broad array of temporal, social, and economic factors affect the places that people
use. Today, Hagerstrand’s “banding” is done: five-sixths of adults in American cities own a
smartphone (Pew Research Center, 2018). GPS data are often now available for research quite
inexpensively or for free (as in the present case). These data record empirical activity spaces —
visit locations — at scale. Geographers now can and should engage the “sampling” strategy
that Hagerstrand rejected, to measure the “direct contacts” that Horton and Reynolds sought.
This approach sweeps straight from a spatial distribution to the realities of routines. It does
not isolate the impact of each constraint, but gathers them into a realistic view of the full
effect.

2.4. Measuring routines with GPS and social data. It has been apparent for the past
decade that smartphone GPS locations and other big data hold transformative potential for
measuring and understanding individuals’ routines. There are many explicit calls to use GPS
data to understand activity spaces in general (Kwan, 2012) and parks in particular (James et
al., 2015; Lachowycz and Jones, 2011; Markevych et al., 2017). These calls mirror a broader
push for “big data” methods in the social sciences (e.g., Lazer et al., 2009).

The move to these data has been somewhat slow. Initial forays used fairly small, purpose-
built datasets (Donaire-Gonzalez et al., 2016; Jarv et al., 2014; Palmer et al., 2013; Zenk et
al., 2011). In other cases, GPS trajectories were compared with accelerometer records to
show that physical activity often takes place within parks, but these studies were limited
in geographic scope and sample size, to just a few hundred subjects (Almanza et al., 2012;
Rodriguez et al., 2012). More recently, larger scale smartphone and Twitter data have been
applied to understand segregation in quotidian routines (Athey et al., 2019; Wang et al., 2018)
and develop increasingly accurate and affordable models of aggregate mobility (Jiang et al.,
2016; Song et al., 2010a,b). These data have recently entered the mainstream consciousness
in the context of the coronavirus pandemic, as a resouce for contact tracing and mobility
modelling. The work most relevant to the present application of parks leverages geotagged
tweets and Flickr images to measure visitation at scale. However, that work has focused
primarily on facilities rather than on neighborhood-scale geographies or the accessibility
experienced by users (Donahue et al., 2018; Sessions et al., 2016).

To conclude: models of “accessibility” constructed purely from proximity dominate work
on the equity and epidemiological consequences of park access, even though it is widely
acknowledged that realized use is the more relevant concept. Decades of work on activity
spaces, time constraints, and cultural and economic compatibility of resources and users have
produced clear theory and evidence to expect an empirical divergence between these concepts.
Over the past decade, there have been widespread calls to use GPS data to measure this.

That is the project of this paper.
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3. DATA

This study uses cell phone data to identify locations visited by individual users. Users’
home locations are imputed from their modal nighttime location, at the level of Census tracts.
Destinations are drawn from OpenStreetMap data.

3.1. Spatial Context. The need for and provision of green and public spaces differs markedly
in high- and low-density environments. This paper focuses on major American cities. These
are defined as the twenty most-populous Census places; their boundaries and the shapes of
tracts within them are both drawn from the Census. These cities are defined jurisdictions
with a responsibility to provide equitable public resources.

The boundaries of parks and open spaces are drawn from OpenStreetMap data (Open-
StreetMap contributors, 2018). These data include all levels of park systems — local, state,
and national. They are available for the entire United States and they are increasingly used
for accessibility research (Logan et al., 2017). Parks are defined from the following tags:

» leisure any of park, dog park, playground, nature reserve, garden, or golf course; or
» landuse is recreation ground, natural is beach, or boundary is a protected area.

Except for museums, buildings within parks are included. So too are pitches and plazas that
may not have any greenspace. Because the focus of this paper is on realized access, golf
courses are included and I do not attempt to remove other paying facilities. OpenStreetMap
ways (roads) are used to calculate network distances from tracts to parks. The locations of
major highways (motorways, trunk, primary, and secondary roads) and rail and subway lines
are also used to eliminate park “visits” from arterials traversing parks. Like the parameters
of traditional models, each of these decisions may be contested.

3.2. Cell Phone Locations. The dataset of behaviors consists of 27 billion GPS locations
or “pings” generated on active applications on users’ smartphones in May 2017. Each line
of data includes identifiers for the device and application, a timestamp, a location, and an
estimated precision for that location. Data were supplied by Carto. Figure 2a shows the raw
locations. Home locations, constructed according to methods described below, are suppressed
from this illustration to preserve anonymity.

Some applications have access only to a user’s approximate location. I first suppress these
data, as well as points with estimated precision worse than half of a kilometer. I also delete
duplicate points, recorded simultaneously by several applications on a single device. I then
trim this dataset to 10-kilometer buffers around the twenty largest American cities, using
the Census boundaries already mentioned. This ensures a generous buffer around every
neighborhood while factorizing the data into separate, computationally manageable jobs for
each city.

Using point-in-polygon merges, I record the Census tract that contains each point, and
flag points that fall within parks, as previously defined. I suppress visits within 10 meters
of major roads and railways. Beautified parkways may make commutes and transit more
enjoyable, but they are not “park visits.” Spatial processing amounting to around 10,000
CPU hours is performed using the OpenScienceGrid. (Pordes et al., 2007; Sfiligoi et al., 2009)
Figure 2b shows the classified points.

For each device, I identify the modal night-time Census tract (midnight to 6 am), and

call this tract its “home” if it registers multiple (night-time) locations there. To ensure
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adequate data to accurately identify the residence, I select a “restricted” sample, including
those devices that

(1) are observed in all three “thirds” of the month,
(2) record at least three nights at home, and
(3) are observed at least 100 times.

These requirements do not substantively affect either the baseline visit rates or subsequent
findings. Results derived with looser or more stringent requirements are presented in
supplementary materials. After these requirements, 455 thousand devices are retained
that collectively record over a billion unique locations. The median device records 549
locations. These data record devices’ direct contacts in the city: empirical activity spaces
and visits to parks.

Park visitation rates, defined as days with a park visit, are averaged over devices in the
restricted sample, at the Census tract level. I discard tracts outside the city limits. I also
record the specific parks visited; one visit is counted per park, per day. Because the data has
finite precision, I avoid spurious park visits by rejecting locations recorded within 100 meters
(Euclidean) of a device’s home. For this purpose only, the point-location of the home is
defined as the centroid of the night-time locations within the home tract.

This study relies on smartphone GPS locations as a record of human mobility. Though
this form of data is no longer new, it has not been applied to the measurement of the use
of greenspace. It is critical to this work to probe and understand its representativeness.
National surveys show that over three quarters of Americans have smartphones; this rises
to better than five sixths in urban areas. Smartphone adoption is fairly evenly balanced
by race and ethnicity, but the poor, less educated, and elderly (particularly over 65) are
under-represented. (Pew Research Center, 2018)

A consistent picture emerges by contrasting the cell phone sample with existing datasets.
Each cell phone user is anonymous; all that is known are times and locations, from which
homes are imputed. Figure 3 shows normalized histograms of race, ethnicity, poverty, and
educational attainment at the Census tract level, for the largest six American cities. These
histograms are weighted by official population estimates from the ACS, as well as by the
number of devices assigned as “resident” within each tract. These histograms contrast where
ACS populations and cell phones devices “live.” They probe whether the normalized sample
rate is systematically high or low in Black versus non-Black, or high versus low-poverty
neighborhoods. The device weights exhibit bias towards whiter, more educated, and less
poor neighborhoods, as predicted by the Pew reports, but the histograms are, on the whole,
strikingly consistent. Any sample biases between tracts presumably also hold within them,
but this is not measurable.

An appendix describes continued validation of the dataset for the present application.
It includes regression-based approaches to the sample composition, and shows that phone
use (number of locations recorded) is consistent between white and minority neighborhoods.
Within the restricted sample, phone use is weakly correlated with park visits. Controlling for
phone usage does not affect subsequent results.

3.3. Demographic Covariates. Tract populations, racial and ethnic composition, poverty
rates, and educational attainment are drawn from the five-year estimates of the US Census’s
2017 American Community Survey (ACS). Race is defined as the fraction of the tract

population that is Black and ethnicity is the fraction Hispanic. The poverty rate is the
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fraction of households below the Federal poverty line. Education attainment is the share of
the adult population (over 25 years old) who hold a bachelor’s degree.

4. ANALYSIS METHODS

This paper proceeds through three steps. The first, already described, is the significant
computational task of extracting park visitation rates from location data. This Section
describes the analysis of these measurements. I first calibrate spatial access models to data,
and then use simple regressions to ask for whom those models over- or under-predict use.

4.1. Evaluating Models of Spatial Accessibility. I first aim to evaluate correlations
between spatial access and use, and to understand the sensitivity of these correlations on
model parameters. To do this, I must first evalute the spatial models.

A number of methods have been used to measure neighborhoods’ potential access to
parks. I focus on the minimum distance, gravity potential, and buffered area as expressed in
Equations 1-3. As already noted, each of these has one tunable parameter: the minimum
area of the closest park, the distance decay rate of the gravity model, and the radius of the
buffer. The distance buffer is the simple, Euclidean (i.e., non-network) construction of a disk
centered at tracts’ centroids, in a local coordinate reference system.

For the minimum-distance and gravity models, distances are measured between the tract
centroid and the park, along a walking road network that excludes motorways and trunk
roads (OpenStreetMap contributors, 2018). To calculate park destinations, a 10 m grid is
overlaid on the park boundaries and each intersection between the grid and the boundary is
considered, along with the park centroid and a “representative point.” The “distance to the
park” is the minimum network distance from the tract centroid to any of these park points,
evaluated using postgres version 10, postgis 2.5.2, and pgrouting version 2.3. I account for
the distances to “snap” the centroids and park edges to the road network. Parks are included
that fall within a (Euclidean) distance of up to 10 km of the home. This is the same buffer
used to divide the data among cities in the first place. Because the gravity potential diverges
when distances approach 0, distances less than 100 m are set to 100 m.

In addition to these “classical” models of access, I fit Poisson models to the usage data,
along the lines of Sessions et al. (2016) and Donahue et al. (2018). Tract-park pairs are
included that are separated by a Euclidean distance of less than 10 km. T also exclude “severe”
network distance outliers, for which the walking distance exceeds 15 km (more than the
maximal Manhattan distance on a grid). This requirement is binding mainly in New York
City. For example, it is less than 9 km from Staten Island to Battery Park in Manhattan,
but it is impossible to reach it with only the walking network (the Staten Island Ferry is not
included).

The models are estimated using Generalized Estimating Equations (GEE), clustered at
the Census tract level and weighted by Census tract populations. The dependent variable
is the visits per device to park or greenspace p from neighborhood location ¢. Mirroring
the traditional models, I include only area and distance as independent variables. These
models use a log link, so the lambda parameter of the Poisson (its mean and width) scales
exponentially with the regressors (A ~ €#X). The logarithm of the area is used, since it
outperforms the raw value. Three functional forms f(-) are used for the distance: (1) its
raw value, (2) its logarithm, and (3) “fixed effect” indicators in 0.1 km steps up to a final
“overflow” bin at > 10 km (in which case the function yields a vector). The final method

offers a non-parametric approach, and performs on par with the others. All three use network
8



Saxon

distance to park boundaries, as described for the gravity potential. The model is thus of the
form,
visits per device,, ~ Pois (exp (8o + 8, log(4,) + Baf(dy))) (4)
where 3; are parameter coefficients and the intercept. Aggregating fitted values over parks
available to each tract yields access measures.
I present the correlation to use for each spatial model, and show the correlations’ dependence
on the parameters of the distance, gravity, and buffer models.

4.2. Equity in Potential and Realized Access. One can then ask where the calibrated
models over- and under-predict use. To do this, I perform (ecological) regressions of
neighborhoods’ potential and realized access, as a function of their demographic characteristics.
I evaluate three models in each of twenty cities. The models are:

(a) spatial access ~ race + ethnicity
(b) realized access ~ race + ethnicity
(c) realized access ~ race + ethnicity + spatial access

The intent of this sequence is, first, to contrast the relationships with race and ethnicity of
potential versus realized access. Second, by adding potential access — the dependent variable
from (a) — as an explanatory variable in model (c), I ask whether that control fully explains
differences in realized use by minorities.

The dependence of park use on area and proximity is different in different cities, reflecting
the scale and spatial structures of inhabitants’ routines. Accordingly, potential access is fit
to data separately in each city. These calibrated models represent the “best case scenario” of
spatial potential access. It is the use that would be derived from a map, if each city’s activity
space scale were known. The baseline model of potential, spatial access — the dependent
variable of model (a) and the explanatory spatial access of model (c) — is the GEE network
distance model. (Alternatives are included in the supplementary materials.) Race and
ethnicity are defined as tracts’ fraction Black or Hispanic, as drawn from the ACS.

The comparison is within and not among cities, so potential and realized access are
normalized in each city to a population-weighted mean access value of 1. The unit of
observation is the population-weighted Census tract. Each model is estimated using weighted
least squares. Because the aim is to show what is experienced by the population, rather than
any causal mechanism, spatial dependencies are not included. Supplementary materials show
that point estimates and uncertainties are qualitatively consistent when estimated with a
unweighted, heteroskedastic and spatial autocorrelation (HAC) robust method.

5. RESULTS

Figure 5 displays realized park use data for Chicago. Tract-level data for all other cities is
available at the journal site.

5.1. The Performance of Spatial Models of Accessibility. Figure 5 also displays access
modeled for Chicago, using the parameters that maximize the correlations to observed use.
The agreement between use and spatial accessibility is far from perfect. Devices from tracts
on the wealthy North Side of the city are seen in parks more often than expected, while
major parks on the West and South Sides fail to generate the predicted use. The correlations
to realized use of the spatial models are plotted in Figure 4 as a function of their parameters,
for the six largest American cities. The maximal correlations for all cities are available in

supplementary materials.
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In all cities, the performance of the traditional proxies is sensitive to their parameters:
the minimum scale of the closest park, the decay parameter for the gravity potential, and
the radius of the buffers. In short, calibration matters. Further, the maximal correlations
are reached at different parameter values in different cities. This reflects different scales of
activity spaces in different cities, and suggests that using simple buffers for epidemiological
studies will capture different exposures or treatments in different cities. The GEE models
are more performant in Chicago, Houston, and Philadelphia, and comparable in New York,
Los Angeles, and Phoenix. Among the GEE models, those with distance and distance fixed
effects out-perform the one using log (distance), with the exception of the distance-based
model in New York City.

In most cases, the overall correlations between realized use and classical models are
moderate, between 0.3 and 0.5. In only Chicago, San Francisco, and Charlotte do the
correlations exceed 0.6, for the buffer and gravity models. The Poisson models fare somewhat
better, with the distance-based model achieving a 0.75 correlation to use in Chicago, but the
average across cities hovers between 0.46 and 0.53. (The correlations are actually slightly
higher for models using Euclidean distance; see supplement.)

A hint at the reason for these moderate correlations is shown in Figure 6, with the distances
travelled by Chicago residents to Chicago parks. Especially for minority populations, a
substantial fraction of park use is far from home. Seen within the framework of activity
spaces, this is no surprise. Most adults commute, and may use parks en route to or near their
place of work, as well as at home. Taking as examples two important parks in Chicago’s Loop
(business district), visitors to Grant Park have traveled an average of 7 km, and those to the
River Walk have come 5.3 km. That visitors travel so far likely reflects the convenience of
use (at work) or appeal of distinctive amenities (like the river) that purely spatial models
cannot capture. They assume that public resources are consumed close to home, at levels
that fall off uniformly with distance and which are enhanced only by area.

5.2. Equity in Potential and Realized Access. Figure 7 presents point estimates and
95% confidence limits for the regression models, across cities. It is a visual depiction of a
specification table.

Replacing potential with realized access as the dependent variable (a to b), the parameter
estimates for race and ethnicity become more negative (shift left) in every instance except for
race in Seattle — although many of these shifts are not significant. In other words, inequality
in park access is more severe than would be expected from a purely spatial analysis. Model
(c) controls for potential, spatial accessibility using the GEE distance model. As can be seen
in Figure 4, the quality of this control — its correlation to use — varies between cities.

The spatial control makes the parameter for fraction Black and Hispanic less negative
in a majority of cities. In other words, the spatial accessibility of parks accounts for some
of the reduced park use in neighborhoods with high minority fractions. This is expected.
Spatial access to parks can be “bought” through housing, and it may be expensive to live by
a desirable park. If minority populations are financially worse off, they may be unable to
do so. However, these differences are usually small, and the parameters remain negative. In
other words, access is worse for minorities than the spatial measure predicts. The supplement
includes results with the fixed effects model of potential access, with Euclidean instead of
network distance (as well as with modified requirements on the device sample). It is worth
emphasizing that while the spatial models are sensitive to their parameters, the findings

regarding race, space, and park use are robust to the model chosen.
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6. DISCUSSION

6.1. Methodological Implications. This paper has had three methodological aims:

(1) to derive and share empirical measures of use of urban resources,
(2) to calibrate existing models of potential access, and
(3) to probe residual discrepancies between measures and models.

The paper shows how modern data sources can be used to characterize activity spaces and
“direct contacts” at scale. I have suggested that (2) is possible only to a limited degree because
urban scale changes between cities. Planners and others who consider the effects of parks
should be aware that (3) the models may be biased and overstate access by minorities.

The intent of this work is not to criticize standard models of potential access derived from
spatial proximity. The models are necessary metrics for purely spatial analysis of access. For
example, parks departments may have limited influence over neighborhoods’ safety or foot
traffic, and so the spatial distribution of facilities may be the only salient lever in a limited
context. Further work is needed to quantify the impact of each aspatial determinant of use,
and to evaluate in particular the extent to which modern, space-time measures capture the
discrepancies observed here.

But proximity should never be confused for a delivered service. When spatial measures are
used as predictors of use, they exhibit regular biases — both along class lines and because
they ignore (measurable) out-of-home activity spaces as fundamental as commutes. While
commutes can be implemented through space-time measures, these data also capture the
results of social forces, intricate routines, and the distinctive appeal of certain parks. This work
reemphasizes the critical impact on access of well-known and theoretically well-developed
aspatial dimensions, and provides measurements when direct exposures are the relevant
parameter. While these limitations are theoretically well-established, these data facilitate a
transition to this intended concept.

For those interested in the impacts of exposures to parks as a “treatment” affecting other
downstream conditions, the spatial models exhibit major limitations. I had hoped to measure
the “empirical parameters” of the distance, gravity, and buffer models, to provide guidance
for other studies where usage data are not available. This is not possible. The correspondence
between between modeled and measured (potential and realized) access varies across cities.
Different cities have different, endemic spatial structures. Activity spaces change non-trivially
from place to place, and a one-off calibration offers no panacea. For example, the correlation
of the area buffer to realized use is maximized at radii from 0.7 km in Denver and 0.8 km in
New York, to the close to the upper bound limit tested of 10 km, in Austin, Jacksonville, and
Seattle. This variable correspondence between spatial proximity and park exposures hampers
comparisons between cities of buffer-based findings on health or activity.

It is also worth noting that the buffers that maximize correlations to use are generally,
larger than the commonly used buffer of 400 m (0.25 mi). That buffer is sometimes justified
from the perceived mobility of young children and the elderly (e.g., Wolch et al., 2005), whose
daily trajectories may be less far reaching than working adults. Because these populations
have low smartphone ownership (Pew Research Center, 2018; Rideout et al., 2010), they are
likely underrepresented in this sample. There are thus valid reasons for retaining traditional
buffer radii, in view of the present evidence.

The basic routines of urban residents are well measured, in the sense that the core business

districts are known and employment origin-destination matrices are available in products
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like the Census Bureau’s LEHD Origin-Destination Employment Statistics (LODES), and
these can be incorporated into space-time measures of accessibility. Other routines and
realities — like neighborhood extent or crime — are difficult or expensive to measure. The
dataset presented here offers the means of doing this. Measurements of park visits by GPS
devices “resident” in each neighborhood, across cities are released as a supplement to this
work. These data complement existing methods and data sources — LIDAR, shapefiles, and
surveys. GPS data are increasingly available, but have high computational overhead and are
usually not “public,” though derived datasets have become far more available through the
coronavirus pandemic. This paper aims to facilitate and stimulate their use — for parks in
large cities — through the release of appropriately anonymized, aggregate data.

6.2. Substantive Implications for Equity in Urban Environmens. This paper’s find-
ings also contribute to the broader literature on resource equity in urban neighborhoods.
In recent decades, sociologists and economists have emphasized the multiple, dimensions of
poverty (Sen, 1980, 1993) and the mechanisms through which these influences themselves
interact (Desmond and Western, 2018; Sharkey and Faber, 2014). Similarly, Sampson (2011)
has advocated ecological measures of neighborhoods that are not mere aggregates over
residents’ Census characteristics, but which reflect the social, physical, and institutional
assets of the neighborhood. Park access is a clear example of such a measure. It is a valuable
resource in its own right, and a driver of downstream conditions like health. This study
quantifies inequity in provisioned resources, and illustrates the systematic interplay between
demographic factors and the consumption of (spatially) available resources.

6.3. The Limitations and Potential of the Data. It must by this point be clear that
the new data also carry significant challenges. They are a convenience sample, biased towards
wealthier and whiter populations; that bias is not corrected for here. National surveys and
comparisons to Census data both suggest that disadvantaged populations are also under-
represented. If this is true within tracts, then the worst off are the most likely missing within
each tract — and they are more likely to be missing in tracts with high levels of disadvantage.
Race and class are tightly intertwined in the United States. Since the data suggest that
disadvantage limits park consumption, if the sampled populations are better off than the
tract as a whole, the demographic biases between potential and realized park access described
in this work would tend to be understated.

Moreover, the scale of biases in the sample rate across tracts is moderate. An appendix
shows that levels of app use are not predictive of neighborhood demographics, and are weakly
correlated park visits. Still, it is not possible with these data to measure the representativeness
of device owners’ behaviors. Of particular concern for parks, children and the elderly have
lower smartphone ownership so, as already mentioned, these more-sensitive populations are
likely under-represented.

Although baseline estimates are not substantially affected by changes in the sample
requirements, the choices that plague models are altered and not avoided. Defining use still
requires a sequence of decisions: what a park is, how long one must remain there for a visit to
“count,” how to define the home, and so forth. These decisions echo choices in past work over
the appropriate buffer (or park definition). Further, the visits measured in this paper are not
the only possible “exposure” to a park. A park can be seen and enjoyed from an apartment
tower, and woods along a highway mitigate noise in adjacent communities. This study has

understood “presence” in a binary sense — a location is either inside a park polygon or it
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is not, and vetoed only within a fixed 100 meter buffer of the home. Potential refinements
including treating locations probabilistically as a function of their estimated precision, or
accounting for the workplace or other frequent non-home locations. However, these strategies
are likely to be overtaken by the inexorable march of technology: GPS chips achieve higher
precision today than they did in 2017. In densely populated regions, location measurements
also leverage WiFi-based services.

This analysis has aggregated measures of visitation at the Census tract level, allowing the
data to be matched to existing Census measures. Studying individual access — as advocated
by geographers since Hagerstrand — is tempting, but raises substantial privacy concerns for
suppliers, and individuals cannot generally be matched to detailed demographic data. The
ability to assemble individual level covariates remains an advantage of surveys. Still, the data
have immense promise. They capture empirical, objective human activity spaces, continuously
and at scale. They permit comparison of populations and cities with unprecedented sample
size. And they are increasingly obtainable.

7. CONCLUSIONS

The beneficial effects of parks and open spaces have rigorously established impact on
health and well-being; the benefit of this public good is not equally shared. This paper has
described a new approach to measuring realized exposures to parks. This analysis is at once at
meter-level granularity and national scope; it showcases the potential of new and increasingly
available data sources for research in geography, epidemiology, and planning. Responsible
use of these data will require continued care for representativeness and user privacy. It is my
hope that appropriate, aggregate measures will stimulate attention to realized use in general,
and to the factors that generate differences with respect to measures of potential, spatial
access to parks in particular.

Contrasting the data with models shows that spatial proxies for park access have different
correlations with realized use in different geographic contexts. These models also exhibit
consistent biases in regards race and ethnicity. As compared with actual use of parks, purely
spatial models of access tend to understate inequity.
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F1GURE CAPTIONS

(1) Walking paths to parks and buffered areas (R = 2 km) are shown for a tract centroid in
Washington DC.

(2) Raw and classified data in Philadelphia. Locations in home Census tracts are suppressed.

(3) Race, ethnicity, and socioeconomic status by Census tract, weighted by population
estimates from the ACS or the number of devices “resident” in the tract. This shows the
consistency of the sampled and Census distributions.

(4) Correlations between access models and realized use, for the six largest American cities,
weighted by Census tract populations. For the traditional models, correlations exceed
0.6 only in Chicago, San Francisco, and Charlotte (not shown).

(5) Use and modeled accessibility of parks in Chicago, by decile. The minimum distance
model requires a park area of 0.3 square kilometers, the gravity potential uses a decay
parameter of 0.6, and the buffer radius is set to 2.4 km. Airports and offshore tracts are
removed.

(6) Kernel density estimate and cumulative distribution for park visits in Chicago, according
to the fraction of the neighborhood population that is Black. More than a sixth of park
visits observed are to parks more than 10 km from the home. This fraction is even larger
for neighborhoods whose residents are overwhelmingly Black. For scale reference, it is
about 25 km from the Loop (CBD) to the southern edge of the city.

(7) Point estimates (circles) and 95% confidence limits (bars) are presented for three models
of access across twenty cities. All models are at the Census tract level, and weighted
by official population estimates. Each color represents a separate model of accessibility
to parks in each city. The dependent variables and spatial accessibility (third column)
are all normalized per city. In model (a), potential access is regressed on race and
ethnicity. Potential access is assessed with a GEE model using log area and distance. In
the remaining models realized access is the dependent variable. Model (b) parallels the
first, with simply race and ethnicity. Model (¢) adds the GEE accessibility from the first
model as an explanatory variable for realized use.
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FIGURE 1. Walking paths to parks and buffered areas (R = 2 km) are shown for a tract
centroid in Washington DC.
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F1GURE 2. Raw and classified data in Philadelphia. Locations in home Census tracts are
suppressed.
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FIGURE 3. Race, ethnicity, and socioeconomic status by Census tract, weighted by population
estimates from the ACS or the number of devices “resident” in the tract. This shows the
consistency of the sampled and Census distributions.

New York L |J-LL|"'\_.-\ ‘|'|-|—'-LLH'L--._.—l'LL ’LLi"—.\
s anetes | 5 SZC.SC”; N .

Chicago

L .
o G ST

05 10 05 1
Black Hispanic Adults with a BA  Under the
Poverty Line

o
o
w
=
o +
o
w
=
o +

18



Saxon

FIGURE 4. Correlations between access models and realized use, for the six largest American
cities, weighted by Census tract populations. For the traditional models, correlations exceed
0.6 only in Chicago, San Francisco, and Charlotte (not shown).
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F1GURE 5. Use and modeled accessibility of parks in Chicago, by decile. The minimum
distance model requires a park area of 0.3 square kilometers, the gravity potential uses a
decay parameter of 0.6, and the buffer radius is set to 2.4 km. Airports and offshore tracts
are removed.
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FIGURE 6. Kernel density estimate and cumulative distribution for park visits in Chicago,
according to the fraction of the neighborhood population that is Black. More than a sixth
of park visits observed are to parks more than 10 km from the home. This fraction is even
larger for neighborhoods whose residents are overwhelmingly Black. For scale reference, it is
about 25 km from the Loop (CBD) to the southern edge of the city.
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FIGURE 7. Point estimates (circles) and 95% confidence limits (bars) are presented for three
models of access across twenty cities. All models are at the Census tract level, and weighted
by official population estimates. Each color represents a separate model of accessibility to
parks in each city. The dependent variables and spatial accessibility (third column) are all
normalized per city. In model (a), potential access is regressed on race and ethnicity. Potential
access is assessed with a GEE model using log area and distance. In the remaining models
realized access is the dependent variable. Model (b) parallels the first, with simply race
and ethnicity. Model (c) adds the GEE accessibility from the first model as an explanatory
variable for realized use.
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EMPIRICAL MEASURES OF PARK USE IN AMERICAN CITIES,
AND THE DEMOGRAPHIC BIASES OF SPATIAL MODELS:
SUPPLEMENTAL MATERIALS

JAMES SAXON

SM1



APPENDIX A. METHODOLOGIES OF THE RECENT LITERATURE ON PARK ACCESSIBILITY

TABLE A.1. Methodologies used in studies of parks, playgrounds, greenspace, and environmental accessibility. The third through fifth columns refer to the
minimum-distance to a facility, buffered areas (or sometimes counts), and gravity potential models. The minimum-distance and buffer models can be dichotomized

CINS

to be functionally identical: there is non-zero park area within a buffer of radius R, and the nearest park is less than R away.

Authors Year Dist. Buff. Grav. Survey Params / Other Methods Subject  Outcomes and Notes

Talen 1998 v v v Container, average travel cost. Equity

Talen and Anselin 1998 v v Average travel cost Equity

Lindsey et al. 2001 v Buffer: 0.5 mi. Dichotomized. Equity

Troped et al. 2001 Vv v Health Activity

Nicholls 2001 Vv v Equity

Takano et al. 2002 v Health Mortality

Giles-Corti and Donovan 2003 v v Surveyer-recorded built env. Health Individual, social, and environmental walking.
Hartig et al. 2003 Experimental: view and walk Psych. Blood pressure & mental test

Huston et al. 2003 v Health Physical activity

Leyden 2003 v Health Walkability — social cohesion

Witten et al. 2003 v Buffer: 0.75 & 2 km. Count Planning

Powell et al. 2003 v Health ~ Walkability — activity

Humpel et al. 2004 v Health Perceived env. — Walking

Smoyer-Tomic et al. 2004 Vv v Buffer: 0.8 km Equity Playgrounds

Bedimo-Rung et al. 2005 vV Other: total acreage, equitability. Conceptual study emphasizes use.

Hoehner et al. 2005 v Buffer: 0.4 km Health Perceived and objective env. — activity.
Wolch et al. 2005 v Buffer: 0.25 mi. Area & Dichotomized. Equity

Cohen et al. 2006 v v v Buffer: 1 mi (count). Grav. decay from fit. Health  Accelerometer-based activity.
Gordon-Larsen et al. 2006 v Buffer: 5 mi Health Obesity and activity

Hillsdon et al. 2006 v Decay param. fit from data. Health  Activity

Maas et al. 2006 v Buffer: 1 km and 3 km. Health Perceived general health.

Barbosa et al. 2007 vV v Buffer: 0.5 km Planning Greenspace chronically underprovided.
Cohen et al. 2007 Vv v Self-reported proximity + user counts. Health Activity

Hume et al. 2007 v Perceived walkability Health Accelerometer-derived activity

Jilcott et al. 2007 v v Health Activity. Poor agreement perceived v. objective.
Nielsen and Hansen 2007 Vv v Reported distance Health Stress and Obesity

Berman et al. 2008 Experimental: view and walk Psych. Directed attention mental tasks

Boone et al. 2009 v Buffer: 400 m. Dichotomized. Equity

Lackey and Kaczynski 2009 v v Dichotomized buffer: 0.75 km Health Poor agreement reported v. objective access.
Maas et al. 2009 v Buffer: 1 km and 3 km. Health Social cohesion as a mediator of health.
Sister et al. 2010 Thiessen polygons! Equity

Maddison et al. 2010 Vv v Health Poor agreement reported v. objective distances.
Singh et al. 2010 v Health Obesity

Dai 2011 Two-stage floating catchment Equity

Higgs et al. 2012 v GIS Distance calculation methods are consequential.
Thompson et al. 2012 Percent greenspace in UK Census ward. Planning Stress: self-report & cortisol.

de Vries et al. 2013 v Buffer: 0.5 km, area per person Health Stress and social cohesion.

Wen et al. 2013 v Grav. 8 = 2, restricted to 7 nearest. Equity

Vaughan et al. 2013 Number and area of facilities in tract. Equity

Rigolon and Flohr 2014 Modified to account for walkability Equity

Astell-Burt et al. 2014 v Buffer: 1 km Equity

Reklaitiene et al. 2014 Three cateogories, cutoffs at 0.3 and 1 km Health General health and depression

Reyes et al. 2014 v Buffer derived from trip data Equity

Hughey et al. 2016 Area intersecting Census block group. Equity

Dadvand et al. 2016 v v Buffer: 0.3 km, dichotomized. Survey: 10 min. Health Subjective general health

James et al. 2016 v Buffer: 0.25 & 1.25 km, mean NDVI Health Mortality

Ulmer et al. 2016 v Buffer: parks in 0.5 km, trees in 0.25 km Health Overall health

Logan et al. 2017 v Dist. refinments: parcel level network dist. GIS

Tan and Samsudin 2017 v Buffer: 0.4 km. Other: population ratios. Equity

Reid et al. 2018 v Buffer: 5 radii, 0.1 to 2 km, & subjective. Health Self-rated health. Larger buffers = bigger effects.
Engemann et al. 2019 v Buffer: 210 x 210 m square. Health Mental health
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APPENDIX B. SAMPLE VALIDATION

The main text presents histograms of Census characteristics weighted by Census populations
and device counts. That comparison suggests that though device populations are shifted
towards whiter and wealthier tracts, this bias is moderate. This appendix presents continued
validation of the sample, with particular attention to sample composition and the variables
used in the present analysis.

I begin with an alternative, regression-based approach to the sampling rate. Call the
number of devices per tract d; and that for the city d. = >, d;. Likewise, call the ACS
populations p; and p.. The tract sampling rate is s; = d;/p;, and the city-wide rate is
Se = d./pe. These city-wide rates are shown in the left panel of Table B.1. I define the rate
normalized with respect to the city-wide rate, 5, = s;/s..

Note that the city-wide rate can be thought of as the population-weighted average of the

tract rates:
_ D PiSt _ D Pedi /e o D di . %

Zt Pt Zt Dt Zt Dt Pe .

A tract’s normalized rate can also be thought of as its share of the citywide devices as
compared with its share of the total population:
St dy/p _ di/d.
Se  de/pe Pi/De

To evaluate the dependence of the city-normalized tract sampling rates 5, on tract-level
population characteristics X, I evaluate single-parameter, robust regressions using iteratively
reweighted least squares (IRLS). The population characteristics X are, at turns, race, ethnicity,
bachelor’s attainment of the adult population, and household poverty rate. Each is expressed
as a fraction ranging from 0 to 1. Call « the intercept and /3 the coefficient of X to estimate.
The regression takes the form

Sc

St =

§t ~ o+ ,BX
Tracts like airports and parks may have zero formal residents and therefore extremely high
sampling rates. I exclude these and other extreme outliers from the regression by dropping
the tracts with the highest 5% of sampling rates. The best-fit parameters B are reported in
the right panel of Table B.1. The intercepts are not reported.!

Parameters are significant and as high as 1. This means that a 1% change in a tract
characteristic from its citywide mean value corresponds to a 1% change in the sampling rate.
In most cities, however, the dependence is much smaller, and the domain of values observed
for each characteristic should also be considered (see Figure 3). More typical is a fractional
difference in the sampling rate of 0.5, between neighborhoods with no or all households in
poverty, or all non-Black or Black, etc. It is notable that the differences in sampling rates
are far less severe than those observed with other digital records like Twitter or Foursquare.
(Anselin and Williams, 2016) Smartphone usage is more widespread than location-tagged

IThe population-weighted average value of 5; is 1 in each city, but the value of X for which a + X =1
depends on the population composition of the city along X, and the intercept o does as well. For example,
consider where X represents tracts’ fraction Hispanic, varying between 0 and 1. Then contrast two cities:
one with almost all tracts completely White (non-Hispanic, X = 0) and the other with most tracts mainly
Hispanic (X = 1). In the city with very few Hispanics, 1 ~ a+ 8 x 0 = «, so a will be close to 1 (its value
for the non-Hispanic tracts). In the Hispanic city, the average value of X approaches 1,s0 1 =« + 8 x 1 and
a=1-73.
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TABLE B.1. Sampling rates by city for the baseline sample, and its dependence on race,
ethnicity and socioeconomic status. The left-hand side presents regression coefficients for
single-parameter, robust regressions of unweighted Census tracts, after dropping the five
percent of tracts with the highest sampling rate — usually airports, uninhabited locations, etc.

Pop. Dev. Sample | Linear Regression Parameters
k] k] Rate | Black Hispanic Educ. Poverty

New York 8560 191.4 0.022 0.14* 0.11*  0.08 0.15
Los Angeles | 3945 133.9 0.034 0.10 —0.44*  0.61* —0.43*

Chicago 2722 95.1  0.035 0.14* —0.39*  0.34* —0.18
Houston 2231 90.6 0.041 |—0.20 —-0.63*  0.90* —1.24*
Phoenix 1567 51.2  0.033 |[—0.18 —0.59*  0.74* —0.76*

Philadelphia | 1570 42.1 0.027 0.19* —0.29* 0.16 0.14
San Antonio | 1433 72.6 0.051 0.97* —0.82% 0.91* —1.19*
San Diego 1370 53.5 0.039 |—0.96* —0.63* 0.76* —1.15%

Dallas 1340 61.6 0.046 |—0.07 —0.71*%  0.74* —1.25*
San Jose 991  29.5  0.030 235 —0.46*  0.62* —1.05*
Austin 900 44.1 0.049 |—-0.64 —0.48%  0.40* —0.66*

Jacksonville 873 54.1 0.062 |—-0.24* 0.66 0.32 —0.76*
San Francisco | 864 51.1  0.059 |—0.14 —0.62 0.75% —0.54

Columbus 776 50.1 0.065 |—0.40* —0.39 0.33* —0.50%*
Fort Worth 820 419 0.0561 |—-0.10 —0.53* 0.56* —0.96*
Indianapolis 856 55.1 0.064 |[—0.36* —0.62 0.39* —0.75*

Charlotte 802 395 0.049 | 0.10 —059% 022 —0.40
Seattle 688 349 0.051 |[—0.78 —0.83  0.56* —0.68
Denver 678 29.2  0.043 | 0.10 —0.48%  0.48*% 0.07
Washington | 672 56.8 0.084 | 0.13  0.08 —0.19  0.55*
¥ p < 0.001

tweeting or Foursquare check-ins. The present comparisons are also derived from homes
instead of destinations, and are normalized accordingly.

Table B.2 shows the same information, but as the slope to intercept ratios 5/a. This
represents the fractional change from a hypothetical tract with X = 0 to 1, changing for
example from a tract with no Blacks to a completely Black one. Tables B.3 and B.4 show
sampling rates and dependence on neighborhood characteristics, for the restricted sample.

Figure B.1 shows the physical locations of over- and under-represented neighborhoods,
according to the unrestricted sample. Over-represented regions are of three stripes: city-
centers (perhaps due to tourists or hotels), places with very low (or even 0) official population
and locations with 24-hour operations (hospitals, airports, transportation hubs, and major
factories).

It is worth noting the large differences in the overall sampling rate between cities, ranging
from 0.022 devices per person in New York City to 0.084 in Washington DC. Note that
these values should not be conceptualized as the fraction of residents in the sample. It is
the number of devices per person. Residents may have multiple devices, and visitors to the
city may also be included. The data supplier provides limited information on the sampling

structure, and does not explain this variation. One natural explanation is that different cities
SM4
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TABLE B.2. This table displays the slope over intercept (/3/«) for the regressions of Table B.1.
This presentation affords the simpler interpretation of a percentage change from a constant
baseline.

Linear Regressions: Slope / Intercept

Black Hispanic Educ. Poverty
New York 0.15% 0.12* 0.08 0.16
Los Angeles 0.10 -0.36*  0.76* —0.41%*
Chicago 0.14* —0.35*  0.38*  —0.17
Houston —-0.19 —0.50* 1.26%* —1.02*
Phoenix —0.18 —0.48*  0.94% —0.68*
Philadelphia 0.20* —0.28%* 0.17 0.14
San Antonio 1.07* —0.54* 1.21°% —1.03*
San Diego —0.96* —0.56*  1.22*% —1.10*
Dallas -0.07 —0.56* 0.98%* —1.03*
San Jose 2.60 —0.42* 0.85% —1.01*
Austin —0.62 —0.43* 0.52* —0.63*
Jacksonville |—0.23* 0.74 0.37 —0.72%
San Francisco |—0.15 —0.59 1.40*  —0.54
Columbus —0.38*% —0.41 0.40*  —0.48*
Fort Worth  |—0.10 —-0.47%  0.72*  —0.88*
Indianapolis | —0.35* —0.61 0.47%  —0.70*
Charlotte 0.10 —-0.57* 0.25 —0.39
Seattle —0.80 —-0.85 0.98%* —0.70
Denver 0.11 —0.44*  0.65* 0.07
Washington 0.15  0.09 -0.19 0.63*
¥ < 0.001

have different amounts of business and tourist travel and shipping hubs within city limits.
These visitors would affect the observed population of “residents.” This explanation does
not appear to be correct, however. For one thing, New York City has one of the lowest rates
despite high levels of visitors. For another, the over-sampling in Washington DC does not
seem to stem from an excess of visitors.

The paper adopts a “restricted sample” for the nominal analysis, from devices less likely
to be travelers. These devices must

(a) show up at their imputed “home” on at least three distinct nights,
(b) be present within the city in the first, middle and final third of the month, and
(¢) record more than 100 unique locations recorded across the month.

These requirements reduce the sample size by nearly two thirds, but do not affect the high
rate in Washington or the low rate in New York. After these requirements the highest sample
rates are in Columbus and Indianapolis, which are not known as hubs of tourism.

It is worth emphasizing that differences in the sampling rate are analytically distinct from
biases in the averaged rates in park use. It matters less if thirty or three hundred devices
are observed in tract, than if the device owners’ behaviors are representative of those of
their neighbors. This is not assessed in the preceding exercises. It is of course impossible

to compare those who are observed with those who are not observed. What can be said is
SM5
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TABLE B.3. Sampling rates by city for the restricted sample, and its dependence on race,
ethnicity and socioeconomic status. The left-hand side presents regression coefficients for
simple, robust regressions of unweighted Census tracts, after dropping the five percent of
tracts with the highest sampling rate — usually airports, uninhabited locations, etc.

Pop. Dev. Sample | Linear Regression Parameters
k] [k] Rate |Black Hispanic Educ. Poverty

New York 8560 64.1 0.007 0.22*% 0.04 —0.12* 0.01
Los Angeles |3945 49.0 0.012 |—0.06 —0.77*  1.05* —1.37*

Chicago 2722 35.6 0.013 0.18* —0.37*  0.11 —0.14
Houston 2231 31.3 0.014 |-0.09 —0.75%  0.96* —1.42*
Phoenix 1567 19.5 0.012 |—-0.60 —0.82* 1.04*% —1.27*

Philadelphia | 1570 15.3  0.010 0.26* —0.49*  0.08 —0.09
San Antonio | 1433 24.6 0.017 0.48 —1.04* 1.18% —1.75%
San Diego 1370 19.6 0.014 |-0.85 —0.67*  0.76* —1.25*

Dallas 1340 224 0.017 |-0.16 —0.91*  0.98* —1.65*
San Jose 991 11.7 0.012 2.53 —0.62*  0.79* —1.53*
Austin 900 15.3 0.017 |—1.34* —0.79*  0.71* —1.38%*

Jacksonville 873 19.0 0.022 |—-0.39* 0.69 0.66* —1.14*
San Francisco | 864 154 0.018 |—0.04 —0.48 0.65* —0.64

Columbus 776 21.5  0.028 |—0.40* —0.36 0.31* —0.71%*
Fort Worth 820 17.2 0.021 |—-0.24 —0.81* 1.09*% —1.48*
Indianapolis 856 23.5 0.027 |—-0.35* —0.87* 0.52*% —1.05*

Charlotte 802 15.6 0.019 |-0.01 —0.72% 0.31 —0.68*
Seattle 688 12.7 0.018 |—-0.61 —0.97  0.54* —0.43
Denver 678 8.1 0.012 | 0.09 —0.57% 055% —0.32
Washington | 672 142 0.021 | 0.38% —0.24 —0.47% 0.93*
¥ p < 0.001

that, conditional on being in the sample at all, the rate of app use is independent of the
demographic composition of the device’s home location, and that this rate is only weakly
correlated with park visitation.

Figure B.2 shows box plots of app use, represented as the number of “pings” (registered
locations), as a function of the fraction of the device’s home tract that is Black or Hispanic.
The inner quartiles and whiskers (10th and 90th percentiles) are both consistent, from bin to
bin. To show dependence to extreme outliers that might bias the distribution, Figure B.3
shows a lowess curve for the two box plots. The curves are, on the whole quite flat, except
in cities with very small minority populations — Blacks in Denver, for instance. Focusing
on tracts instead of users, Figure B.4 shows tracts’ average park use against their median
pings per device. I use median pings instead of mean pings to avoid the impact of a few very
severe outlier devices in ping rate, that otherwise entirely wipe out any correlation. Using
the median ping rate, most correlations remain weak: they exceed 0.3 only in Los Angeles
(0.37), San Antonio (0.33), Jacksonville (0.43), and Fort Worth (0.37). Figure D.7 shows that
the regression results are robust to a control for the ping rate.
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TABLE B.4. This table displays the slope over intercept (/) for the regressions of Table 77,
This presentation affords the simpler interpretation of a percentage change from a constant
baseline.

Linear Regressions: Slope / Intercept
Black Hispanic FEduc. Poverty

New York 0.23* 0.04 —0.11%* 0.01

Los Angeles |—0.06 —0.56*  1.55%  —1.12*
Chicago 0.20* —0.33*  0.11 —0.13

Houston —-0.09 —-0.57*  1.36% —1.13*
Phoenix —0.57 —0.61*  1.43% —1.03*
Philadelphia 0.29* —0.45%  0.08 —0.09

San Antonio 0.51 —-0.62* 1.68* —1.39*
San Diego —0.82 —0.56*  1.14* —1.12*
Dallas -0.16 —0.66* 1.40%* —1.26*
San Jose 2.74 —0.52*  1.16% —1.39*
Austin —1.22% —0.63* 1.10* —1.20%*

Jacksonville |[—0.35* 0.76 0.83*  —1.01*
San Francisco |—0.04 —0.46 1.04*  —0.62

Columbus —0.36* —0.36 0.35*  —0.63*
Fort Worth —0.24 —0.65* 1.61%* —1.24%*
Indianapolis |—0.33* —0.84* 0.64* —0.92%*

Charlotte —-0.01 —0.66* 0.35 —0.64*
Seattle —0.61 —-0.94 0.85* —0.43
Denver 0.09 —-0.49* 0.73* —0.31
Washington 0.47% —0.23 —0.38* 1.05%
< 0.001
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F1cURE B.1. Normalized device to population ratio for studied cities. Core business districts,
airports and other transportation hubs, and 24-hour facilities tend to be over-represented,
presumably due to travel and the use of nocturnal locations for residence assignment.

New York Los Angeles Chicago Houston

San Antonio San Diego
%4 ST < ~
S K Py
eyl E7 g DA d
Te N e %
] / y | »
San Jose Austin Jacksonville
g-;
5 & "
= = :
B A b
San Francisco Columbus Fort Worth Indianapolis
' -..-. ‘e ~r
.’ ‘ ‘*ﬁ" E‘- ] =
2R mEL Rl S
- - ~ "B (’ 4
Rix e ¥ 's ’
Charlotte Seattle

Denver Washington

e g w G

- —
1.00 1.2 1.50
Relative Devices / Population

SM8



Saxon

F1GURE B.2. Box plot of pings per person as a function of tract demographic composition.
The boxes present the median and inner quartiles, and the whiskers show the 10th and 90th

percentiles.

New York Los Angele: Chicago Houston Tract Fraction New York Los Angeles Chicago Houston Tract Fraction
1000 ] ] ] Black & 1000 [ [ [ Hispanic
£ w00 I { T I I T I = 0.00-0.25 £ w00 [ [ [ ( ( [ = 0.00-0.25
:1 | . _l | H 0.25-0.50 |- . | 0.25-0.50
0 P > + DU = 0.50-0.75 o PR - e 0.50-0.75
Phoenix Philadelphia San Antonio San Diego 0.75-1.00 Phoenix Philadelphia San Antonio | San Diego 0.75-1.00
#1000 ] ] ] ] % 1000 [ [ [
£ £ [ [ [ X [
& 500 £ T i 5 i £ I ]’ ]’ % 500 3
o L LI | L = 0 L_ied H L L L
Dallas San Jose Austin Jacksonville Dallas San Jose Austin Jacksonville
1000 I 1000 [
500 500
San Francisco Columbus Fort Worth Indianapoli San Francisco Columbus Fort Worth Indianapolis
e 11 T (T 1 T
) 5005—1—; j :] o ; £ [ [ E I:
ol | B~ | in | B | . == | | B |
Charlotte Seattle Denver Washington Charlotte Seattle Denver Washington
0 1000 0 1000
el ] ] I [ 1] el LT s s T !
& 500 ; £ I { & 500 j [ T T
JNBE - L 5. BE%3 JLEE PRI TEEN P i

(A) Observation Rate by Fraction Black

(B) Observation Rate by Fraction Hispanic

F1GURE B.3. Lowess curves for pings per person, as a function of tract ethnic and racial
composition. This presentation is similar to Figure B.2 but is more sensitive to the tails of
the distribution.
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F1GURE B.4. Monthly park visits per person by tract, as a function of tracts’ average pings
(observations) per person, for the restricted sample.
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APPENDIX C. CORRELATIONS BETWEEN CONSTRUCTED MEASURES AND MODELS

Table C.1 investigates the robustness of park usage variables on the sample restrictions.
The nominal, restricted sample required devices to be observed in all three thirds of the
month, three nights at home, and at least 100 times. Dropping this requirements makes for a
sample three times larger (contrast Tables B.1 and B.3). Using these samples, the lowest
correlation in park visitation by tract is in Washington DC, where it remains 0.84. The
majority of correlations exceed 0.9. I also define two more-stringent samples: one tight, with
8 observed nights and 150 locations, and one ultra-tight, with 10 nights and 200 locations
observed. In all save three cases, the correlations in park use to the nominal sample exceed
0.8. The three outliers are the ultra-tight samples for New York City (0.77), San Jose (0.78)
and Washington DC (0.73). In short, the results are quite robust to significant changes in
the sample composition.

Figure 4 of the main text presents the correlations between the baseline measurement of
park use per deivce, and six spatial models, in the six largest cities in the United States.
Table C.1 also shows those population-weighted correlations for the twenty largest cities. The
table shows the maximal correlations achieved over a scan of the model parameter (gravity
decay, buffer radius, and nearest park size).

TABLE C.1. Correlations at the Census tract level between measured use based on the
nominal, restricted sample and alternative measures and models. For the “traditional” spatial
models (distance, gravity, and buffer), the quoted value is the maximum across the scan of
parameters as shown in Figure 4. To orient study, cells are shaded in a gradient from dark
purple for correlations near zero, to light yellow for those approaching one.

Measured Use Traditional Spatial GEE Poisson Fits GEE Poisson Fits
Sample Selection Maximized Correlation Euclidean Distance | Network Distance
Loose Tight Ultra | Min. Dist. Buffer Gravity | Dist. Log FE | Dist. Log FE
New York 0.88 0.84 0.77 0.28 0.36 0.22 0.17 033 0.33| 0.09 0.31 0.31
Los Angeles 0.90 0.88 0.81 0.47 0.48 0.39 0.57 0.54 059 | 0.43 0.43 0.49
Chicago 0.90 0.92 0.88 0.53 0.64 0.68 0.74 0.70 0.77 | 0.75 0.61 0.79
Houston 0.95 0.93 0.88 0.40 0.39 0.26 0.69 0.63 0.73| 0.66 0.63 0.72
Phoenix 0.92 0.92 0.88 0.55 0.49 0.40 0.49 036 0.49 | 040 0.34 0.44
Philadelphia 0.91 0.92 0.87 0.42 0.36 0.54 0.72 0.67 0.73 | 0.68 0.64 0.71
San Antonio 0.93 0.88 0.83 0.33 0.44 0.39 0.48 0.48 0.54 | 0.45 047 0.50
San Diego 0.89 093 0.89 0.47 0.44 0.36 0.66 0.62 0.68 | 0.59 0.56 0.60
Dallas 094 094 0.90 0.29 0.54 0.51 0.60 0.58 0.64 | 0.63 0.60 0.68
San Jose 0.87 085 0.78 0.23 0.35 0.43 0.19 0.27 040 | 0.11 0.19 0.33
Austin 0.91 0.94 0.88 0.36 0.41 0.41 0.52 0.48 0.58 | 0.48 0.50 0.56
Jacksonville 0.97 0.96 0.94 0.28 0.52 0.46 0.51 0.42 055 | 041 0.41 047
San Francisco | 0.93  0.90 0.86 0.54 0.69 0.62 0.34 0.55 0.55| 0.31 0.44 0.51
Columbus 0.90 094 0.90 0.36 0.33 0.31 0.60 0.56 0.63 | 0.57 0.57 0.62
Fort Worth 0.94 097 094 0.27 0.34 0.20 0.41 0.42 050 | 040 0.44 0.48
Indianapolis 093 094 0.90 0.49 0.49 0.44 0.65 0.64 0.71| 0.62 0.62 0.68
Charlotte 0.97 097 094 0.50 0.60 0.60 0.71 064 0.79| 064 0.64 0.69
Seattle 0.87 0.87 0.81 0.35 0.38 0.37 0.24 0.28 0.33| 0.16 0.27 0.27
Denver 0.89 090 0.84 0.26 0.18 0.02 0.33 037 034 | 032 0.36 0.36
Washington 0.84 084 0.73 0.44 0.44 0.33 0.44 048 048 | 0.45 0.48 0.48
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APPENDIX D. CONTRASTING POTENTIAL AND REALIZED ACCESS WITH ALTERNATE
SPATIAL MODELS.

Table D presents the form of regressions used for the generalized estimating equations
(GEE) spatial models. Tract-park pairs are considered out to a Euclidean distance of 10 km
or a network distance of 15 km. The network requirement “applies” in particular, in New
York City, whose boroughs are separated by water, and whose bridges and tunnels are often
not accessible for pedestrians. (I exclude motorways and trunk roads from the “walking”
network.) For this tract-level analysis, the difference between Euclidean and network distances
has limited impact on the pseudo-R2. Chicago is in fact an unusual case; in most cities the
Euclidean distances are slightly more performant (see Table C.1).

Figure D.1 repeats the form of Figure 7, using Euclidean instead of network distances.
Figure D.2 does the same, using a heteroskedastic and autocorrelation (HAC) robust OLS
method, as implemented in pySAL. (Anselin and Rey, 2014) This analysis uses an adaptive
triangular kernel with a number of neighbors taken as the cube root of the number of tracts.
Figure D.3 uses distance fixed effects in the GEE approach to spatial access. Figure D.4 uses
the loose, unrestricted sample of users: without the requirement of at least 100 locations
over the month, three nights, and all three thirds of the month. Figures D.5 and D.6 go in
the opposite direction — they are “tight” and “ultra-tight,” requiring users to be observed,
respectively, 8 or 10 nights in the month and 150 or 200 times. Results are largely unaffected by
these changes among spatial methods or regression methods. However, with the unrestricted
sample, the distance fit is less effective as a control (its parameter estimates are smaller), and
the dependence of use on race and ethnicity is larger. This trend does not continue, however,
to the tight and ultra tight samples.

Finally, Figure D.7 again repeats the baseline model, but with a control for tracts’ median
ping rate. The aim of this paper is to evaluate park use, not phone use. Results should not
be sensitive to phone use, and empirically they are not.

TABLE D. Park use in Chicago modeled at the level of Census tract-park pairs, using
generalized estimating equations, grouped by Census tract and using and exchangeable
covariance structure. Observations are weighted by Census tract population. All parameters
shown are significant at the 0.001 level.

Dep. Variable: Tract to Park Visit Rate

Log Area 0.55  0.62 0.60 058 0.57 0.37
(0.01) (0.01) (0.01) (0.01) (0.01) (0.03)

Log Eucl. -0.88

Distance (0.03)

Euclidean -0.86

Distance (0.02)

Network -0.75

Distance (0.02)

Distance FE Eucl. Net. Net.

Clusters Tracts Tracts Tracts Tracts Tracts Parks
N Clusters 793 793 793 793 793 1201
Pseudo- R? 0.53 0.65 0.66 0.63 0.6 0.49
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F1GURE D.1. Point estimates (circles) and 95% confidence limits are presented for three
models across twenty cities. The Figure is the same as Figure 7, except that it uses Euclidean
instead of network distances to parks, for the spatial models.
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FIGURE D.2. Point estimates (circles) and 95% confidence limits are presented for three
models across twenty cities. The Figure is the same as Figure 7, except that it uses unweighted
OLS with Heteroskedastic and Autocorrelation robust standard errors, implemented using
pySAL. (Anselin and Rey, 2014)
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F1GURE D.3. Point estimates (circles) and 95% confidence limits are presented for three
models across twenty cities. The Figure is the same as Figure 7, except that network distance
fixed effects are used instead of network distance, in the GEE model.
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FIGURE D.4. Point estimates (circles) and 95% confidence limits are presented for three
models across twenty cities. The Figure is the same as Figure 7, except that park use is
evaluated using the unrestricted sample: without the requirement of at least 100 locations
over the month, three nights, and all three thirds of the month.
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FI1GURE D.5. Point estimates (circles) and 95% confidence limits are presented for three
models across twenty cities. The Figure is the same as Figure 7, except that park use is
evaluated using with a tight sample: requiring at least 8 nights at home and 150 locations
over the month (as well as in all three thirds of the month).
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FIGURE D.6. Point estimates (circles) and 95% confidence limits are presented for three
models across twenty cities. The Figure is the same as Figure 7, except that park use is
evaluated using with a “ultra” tight sample: requiring at least 10 nights at home and 200
locations over the month (as well as in all three thirds of the month).
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FI1GURE D.7. Point estimates (circles) and 95% confidence limits are presented for three
models across twenty cities. The Figure is the same as Figure 7, except that it also controls
for the median pings per device, in each tract. This has a minimal impact on parameter
estimates.
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